Exercises for seminar week X, November 23-26, ECON3215/4215, fall 2010

A

Cowell problem 10.8 (page 324)

B

An individual has an initial wealth of 1,000 , but runs a ten percent risk of losing 100 due to an accident. The loss can be fully or partially insured. Denote the amount of insurance K, so that $K=0$ represents no insurance, $0<K<100$ represent partial insurance, and $K=100$ represents full insurance. The premium rate is p, that is, the cost of K units of insurance is $p K$. Assume that the individual's decisions can be described as expected-utility maximization, and let u be the utility function.
(a) Formulate the individual's decision problem.
(b) Assume that the rate p is fair, in the sense that the insurance company makes zero profit in expected value. If the individual is risk averse, what is the optimal K ? Justify your answer, mathematically and/or graphically.
(c) Now assume that p is higher than the fair rate described in (b). If the individual is risk neutral, what is the optimal K ?
(d) Describe qualitatively (for example, by a graph) the behavior of a risk-averse individual facing a rate as described in (c).
(e) If the utility function is $\mathrm{U}(x)=\ln x$, derive an expression for the ratio between the individual's final wealth with and without an accident.
(f) Return to the assumptions of (b), that is, fair premium rate and risk-averse individual. At a cost of C, the individual can reduce the risk of accident to five percent. For which values of C is the risk-reducing activity socially optimal? Will it be undertaken, when full or partial insurance can be bought, as described above?

